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LEITER TO THE EDITOR 

Topology of textures in the planar phase of superfluid 3He 

A Love and S Zakrzewski 
Department of Physics, Bedford College, University of London, Regent's Park, London 
NW14NS, UK 

Received 29 January 1979 

Abstract. Singular and non-singular textures of the planar phase of superfluid 'He are 
classified using topological homotopy group methods. The effects of an applied magnetic 
field and of boundary conditions at the walls of the container are discussed. 

The dipolar interaction between 'He atoms is expected to stabilise a superfluid phase 
called the planar phase over a narrow temperature interval Tc) between the 
normal phase and the A or B phase (Leggett 1975, Jones et a1 1976). Topological 
homotopy group methods have been introduced into condensed-state physics by 
Toulouse and Kleman (1976) and Volovik and Mineev (1977a, b). In this Letter we use 
these methods to classify the textures which may be seen in the planar phase when good 
enough temperature control is obtained to perform experiments on this phase. 

The order parameter for any superfluid phase of 'He is a complex 3 x 3 matrix ASj 
which transforms as a vector under space rotations with respect to the column index i, 
and as a vector under spin rotations with respect to the row index k. For the case of the 
planar phase, the most general order parameter is 

A SI = A eiaeSiin, (1) 
where n is a real unit vector and a is a real phase angle, both of which may take different 
values at different points of space to produce a 'texture', and A is a constant magnitude. 
We shall use the shorthand (a, n) for this order parameter. 

The topological space of planar phase order parameters is thus 

R = (S2 X S')/Z2. (2) 
(The quotient with 2 2  corresponds to the fact that (a, n) and (a  + T, -n) give the same 
order parameter ASi.) 

The homotopy groups for R may be calculated from an exact sequence of 
homomorphisms (see, for example, Steenrod 195 1): 

rz(Z2) + r 2 ( S 2  X S') + r z ( R )  + TI(&) + r 1 ( S 2  x S') + v l ( R )  + TO(&) + *o(S2 x SI), 
(3) 

o+z + T2(R)+ o+z -* Tl(R)+Z2+0. (4) 

v z ( R )  = z ( 5 )  

i.e. 

In this sequence the image of one mapping is the kernel of the next. Consequently, 
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and 
n l ( R ) / Z  = Z2. 

Equation (6) still leaves some ambiguity in the identification of r l ( R ) ,  namely 

n i ( R )  = Z  + 2 2  or m ( R )  = 2. 

(In the latter case, the 2 in the denominator of the quotient is the even integers in 
TI(R).) 

The ambiguity may be resolved by checking directly that two textures of the type 

(a ,  n) = (44, X  ̂ cos $4 + j sin $4) 
add to a texture of the type 

(a, n) = (4, $1 
and not to the uniform texture. Thus, 

7~1(R)  = 2. 

The line singularities 

(a ,  n) = ( m 4 ,  f cos n4 + j  sin nd) 

(a, n) = ( ( m  + $14, f cos(n +t)4 + j sin(n + ;)4) 
and 

may be assigned a topological quantum number 

(7) 

N ( Z )  = 2m or 2 m + 1  (9) 
respectively. (The situation resembles that which occurs for the A phase of 3He on the 
surface of a pore of radius small compared with the dipolar length (Bailin and Love 
1978a).) These results may also be derived using the algorithm of Mermin (1978). 

According to equation ( 5 ) ,  point singularities are classified by an integer p, which is 
the number of times the sphere in order parameter space is covered when a sphere in 
real space is covered once. Thus the point singularity 

n = i cos 8 +sin 8( f  cos j@ + j sin p 4 )  (10) 
has topological quantum number, p. Following the method of Mermin (1978, see also 
Volovik and Mineev 1977b) it is easy to check that the action of r1 on r2 is trivial, so 
that different values of p cannot be transformed into each other by moving the point 
singularity round a line singularity. 

Because eMiinj is real, the superfluid velocity is simply given by the gradient of the 
phase of the order parameter, i.e. 

us = ( ) i /2m)Va.  (11) 
However, because there are line singularities in the planar phase with a a half-integral 
multiple of 4 as well as an integral multiple, circulation of superflow in the planar phase 
is quantised in half-integral multiples of h / m  instead of integral multiples as for the B 
phase, i.e. 

$ u s .  d l  = (hr /m)$N(Z)  (12) 

where N ( 2 )  is the topological quantum number of equation (9). 
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When the planar phase is confined to a cylindrical container of radius at least one 
centimetre (so that the surface energy is not swamped by the bending energy), the 
boundary conditions at the surface of the container may provide a more stringent 
topological classification of textures. (For a discussion of this point see Bailin and Love 
(1978a).) At the boundary, n is normal to the surface, i.e. 

n = *$. (13) 

Afii = *eiaefii$p (14) 

The space of order parameters at the boundary is thus 

Since the minus sign may be absorbed into the phase of the order parameter by 
replacing Q by Q + T, the order parameter space is simply 

2 = S '  (15) 
and we may take n = 6 for definiteness. The line singularities in a cylindrical container 
are classified by 

* , ( d ) = Z  (16) 

(Q, n )  = (m4, 6) 
when account is taken of boundary conditions; e.g. the texture 

(17) 
may be assigned a topological quantum number m. In the absence of boundary 
conditions it would have been classified according to equation (9) by N ( 2 )  = 2m. 

Thus, the effect of the boundary conditions for line singularities is not to introduce 
any new topological quantum numbers but merely to eliminate the possibility of 
textures involving half-integral multiples of 4. 

Non-singular textures in a cylindrical pore may be studied by considering mappings 
of the cross section of the pore into orderparameter space, i.e. of a disc or hemisphere 
into R with its boundary mapped into R (see Bailin and Love 1978b, Volovik and 
Mineev 1978). In the present case, the problem is one of mapping a hemisphere to a 
sphere (associated with n )  with the boundary of the hemisphere mapped to the equator 
of the sphere (n  =$). The phase factor elQ may be set to a constant because we are 
dealing with non-singular textures. Such mappings have already been discussed in 
connection with the B phase by Bailin and Love (1978b). The topologically 
inequivalent mappings are given in equations (lo), (11) and (12) of that paper, and are 
characterised by an integer N such that the northern hemisphere of the sphere is 
covered ( N + 1 )  times and the southern hemisphere N times. There are also 
inequivalent textures in which the roles of the northern and southern hemispheres are 
interchanged. 

When a magnetic field H is applied to the planar phase (in bulk) the n vector is 
aligned parallel or antiparallel to H. Let us choose 

H =Hi. (18) 

n = &  (19) 

(20) 

Then 

and the order parameter space is reduced to 

A . = *eia€ ..i.. 
PI f i l l  I 
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Since the minus sign may be absorbed into the phase factor we see that the order 
parameter space is 

RH = S' (21) 

r i (RH)  = Z. (22) 

and 

The topological quantum is simply the winding number for the phase of the order 
parameter. 

A magnetic length tH may be defined such that when the texture varies on this scale 
of distance the bending energy is comparable with the magnetic energy. Magnetic fields 
much larger than one gauss must not be applied, otherwise a transition to the A1 phase 
occurs. For magnetic fields of a few gauss, eH = 1 cm, and for lower magnetic fields tH is 
greater. Non-singular textures such that the magnetic energy is minimised only at the 
extremities of the texture can occur on the scale of the magnetic length. If the texture is 
cylindrical we shall refer to it as a cylindrical soliton, and if it is planar as a domain wall. 

In the case of cylindrical solitons, a topological classification (Volovik and Mineev 
1978) involves mapping a disc, representing the cross section of the cylindrical soliton, 
onto a sphere (associated with n ) ,  with the boundary of the disc mapped onto the south 
pole of the sphere (n  = -2). The phase factor e', may be set to a constant for a 
non-singular texture. Since the boundary of the disc is mapped to a single point, the 
problem is the same as mapping a sphere to a sphere, and inequivalent textures are 
characterised by an integer q, which is the number of times the second sphere is covered 
when the first sphere is covered once. Examples of textures with topological quantum 
number 4 are 

(23) n = 2 cos P ( p / t ~ ) + s i n  @(p/&)(i  cos q4 + j  sin qc$) 

w i t h O s p s r  and 

Domain walls may be classified by the relative homotopy group r l (R ,  RH) which 
describes mappings of a line into the order parameter space R with its end-points 
mapped into RH (Volovik and Mineev 1978). r l ( R ,  RH) may be computed from an 
exact sequence of homomorphisms (see, for example, Steenrod 195 1): 

i 

~ I ( R H ) +  + r i (R ,  RH) + ~ o ( R H ) ,  

Using the exactness of the sequence, 

RH) = r i ( R ) / i ~ i ( R ~ ) .  (26) 
Since the mapping i is the inclusion of rI(RH) in r l ( R ) ,  we know from our preceding 
discussions that it maps the integers onto the even integers. Thus 

ri(R RH)= Z2. (27) 
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(28) 

Since the space R H  is connected, the ends of any planar phase domain wall must be in 
the same connected component of R H .  This means that the topological stability of 
planar phase domain walls could not be understood without the use of relative 
homotopy groups. 

The surface energy for the planar phase can also produce domain walls. Between 
parallel plates separated by about 1 mm these domain walls have length about 1 mm. 
The topological discussion is exactly analogous to that for magnetic domain walls with 
the normal to the surface playing the role of the magnetic field. (Similar structures have 
been described in the B phase by Maki and Kumar (1977).) 

We would like to thank D Bailin for a helpful discussion. This research was supported 
in part by the Science Research Council under grant number GR/A/43087. One of us 
(SZ) is grateful to the Science Research Council for a research studentship. 
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